LLM Index Text
The LLM Index Text task is designed to index the provided text into a vector space for efficient search, retrieval, and processing at a later stage.
It takes text input, processes it using a specified language model to generate embeddings, and stores these embeddings in a chosen vector database.
Task configuration
Configure these parameters for the LLM Index Text task.
Parameter | Description | Required/Optional |
---|---|---|
inputParameters.vectorDB | The vector database to store the data. Note: If you haven’t configured the vector database on your Orkes Conductor cluster, navigate to the Integrations tab and configure your required provider. Refer to the documentation on how to integrate Vector Databases with Orkes console. | Required. |
inputParameters.namespace | Namespaces are separate isolated environments within the database to manage and organize vector data effectively. Choose from the available namespace configured within the chosen vector database. The usage and terminology of the namespace field vary depending on the integration:
| Required. |
inputParameters.index | The index in your vector database where the text or data will be stored. The terminology of the index field varies depending on the integration:
| Required. |
inputParameters.embeddingModelProvider | The LLM provider for generating the embeddings. Note: If you haven’t configured your AI/LLM provider on your Orkes console, navigate to the Integrations tab and configure your required provider. Refer to the documentation on how to integrate the LLM providers with Orkes Conductor. | Required. |
inputParameters.embeddingModel | The embedding model provided by the selected LLM provider to generate the embeddings. | Required. |
inputParameters.text | The text to be indexed. | Required. |
inputParameters.docId | A unique ID to identify the document where the indexed text will be stored. | Optional. |
Task definition
This is the JSON schema for an LLM Index Text task definition.
{
"name": "llm_index_text_task",
"taskReferenceName": "llm_index_text_task_ref",
"inputParameters": {
"vectorDB": "pineconedb",
"namespace": "myNewModel",
"index": "test",
"embeddingModelProvider": "azure_openai",
"embeddingModel": "text-davinci-003",
"text": "${workflow.input.text}",
"docId": "XXXX"
},
"type": "LLM_INDEX_TEXT"
}
Task output
There is no output. The LLM Index Text task will store the indexed data in the specified vector database.
Adding an LLM Index Document task in UI
To add an LLM Index Document task:
- In your workflow, select the (+) icon and add an LLM Index Document task.
- Choose the Vector database, Namespace, Index, Embedding model provider, and Embedding model.
- Enter the Text to be indexed.
- (Optional) Enter an arbitrary Doc ID to store the indexed text.